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Low-dose, low-temperature kinematic and dynamical convergent-beam electron

diffraction (CBED) patterns from thin organic crystalline ®lms have been used

for the measurement of structure-factor amplitudes and phases. Kinematic

conditions are identi®ed by the observation of uniform intensity within the

CBED discs and used to determine structure-factor magnitudes. CBED patterns

from thicker regions affected by multiple scattering give structure-factor signs,

which are varied for best ®t. The use of a small probe (and the Kohler SAD

mode) minimizes bending artifacts. A new method of thickness determination

is evaluated. The approach is tested using experimental data from the

centrosymmetric anthracene structure, the results compared with direct

methods, and a potential map derived from experimental data. The faint peaks

due to H-atom positions may be distinguished. Key issues in¯uencing the

validity of the method such as the appropriate dimension of the structure-factor

matrix, sample thickness and crystal orientation are discussed.

1. Introduction

In previous work (Wu & Spence, 2002), we have shown that

useful convergent-beam electron diffraction (CBED) patterns

may be obtained from organic crystals at low temperature. For

inorganic crystals, thickness variations and multiple scattering

normally prevent the collection of reproducible transmission

electron diffraction (TED) spot-pattern data, while, for non-

biological thin organic ®lms, bending and radiation damage

have a similar effect. In this paper, we demonstrate the use of

`Kohler-mode' spot patterns and kinematic (`blank disc')

CBED patterns from a thin centrosymmetric organic crystal

(anthracene) for the determination of structure-factor

magnitudes under kinematic conditions. While this approach

may not be useful in biology (where large numbers of unit cells

are needed to provide redundancy against radiation damage),

however it does appear to be useful for the more radiation

resistant, unsaturated, �-bonded aromatic hydrocarbon

molecules. The observation of CBED discs of approximately

uniform intensity (blank discs) is a useful experimental test for

single-scattering conditions. The small illuminated area used

by both methods minimizes bending effects. Data are recorded

at liquid-nitrogen temperature to reduce radiation damage,

and an elastic imaging ®lter is used to reduce background in

the diffraction patterns. We then use CBED patterns from a

thicker crystal, where multiple scattering is present, to deter-

mine the structure-factor phases. We base these calculations

on the structure-factor magnitudes obtained from the thin

areas and vary their signs (and thickness) for best ®t to the

dynamical CBED patterns. Because in centrosymmetric

structures only the signs of the structure factors (to which the

dynamical intensities are extremely sensitive) are varied, the

number of possibilities is relatively small and multiparameter

optimization is rapid. The results are compared with the

application of direct methods to the kinematic data. We also

evaluate a new method of thickness determination.

The multislice and Bloch-wave methods provide two well

established methods for calculation of the intensity of re¯ec-

tions when an atomic structure is known. The direct inversion

from observed multiply scattered intensities to the crystal

potential has also been theoretically discussed for unknown

structures, and several approaches suggested (Spence, 1998;

Allen et al., 1998). Methods based on the two-beam model for

dynamical scattering and the approximation |Fg| � Ig have

been tested (Vainshtein, 1964; Cowley, 1992a,b; Wu & Spence,

2002). Although this approximation was previously used only

for correcting electron diffraction data from mosaic crystals

and polycrystalline specimens, Weirich et al. (2000) note that

this type of correction also improves the quality of single-

crystal data. However, the two-beam model has been shown to

be inadequate at least for explaining how multiple scattering

in¯uences individual intensity (Dorset, 1995). While a two-

beam approximation can be helpful for structure determina-

tion in some cases, the use of the Bloch-wave method includes

as many beams as necessary to account for dynamical effects,

and thus should be used for ab initio structure analysis.

Crystal thickness and orientation are two important par-

ameters in¯uencing the observed intensities of electron



diffraction. Thus, in the ®rst part of this paper, we ®rstly

discuss a method to estimate sample thickness (t) and orien-

tation (Kt) using a kinematical approximation that includes

the excitation error. The estimated thickness can be used as an

indication of deviations from the kinematical approximation.

There have been two main approaches to solving the phase

problem of electron crystallography. Firstly, the phases of

some re¯ections can be derived from high-resolution electron

images. This has been demonstrated by Unwin & Henderson

(1975) for biological specimens and by Klug (1978/79). The

phases that are lost in diffraction patterns are preserved in the

images and can be extracted from the Fourier transforms

(DeRosier & Klug, 1968). However, beam-sensitive materials

may be quickly destroyed under imaging conditions. The use

of direct methods is the second approach to solving the phase

problem if electron diffraction patterns can be taken from

very thin areas, say less than 75 AÊ (Dorset et al., 1979), so that

the observed intensities can be treated kinematically (Dorset

& Hauptman, 1976). It offers the big advantage for organic

crystals that the electron density can be reduced by 100 times

or more that used for imaging. Recently, the structures of

several unknown compounds including ceramic oxides

(Sinkler et al., 1998) and a precipitate AlmFe in aluminium

alloys (Gjùnnes et al., 1998) have been solved using electron

diffraction data. Direct methods have also been used in the

image processing of high-resolution electron microscopy, and

for solving incommensurate crystal structures (Fan, 1999). It

has also been used in protein crystallography (Dorset &

Gilmore, 1999; Gilmore, 2000) and for solving surface struc-

tures from surface diffraction data (Landree et al., 1997;

Gilmore et al., 1997).

The measurement of structure factors by electron diffrac-

tion has a long history (Cowley, 1978, 1992a,b). It contains two

related aspects: the re®nement of accurate structure factors

for a known crystal structure, and the recovery of a suf®cient

number of structure factors to determine an unknown struc-

ture. In the ®rst case, the intersecting Kikuchi-line method

(Gjùnnes & Hùier, 1971), the critical-voltage method (Uyeda,

1968) and matching of the rocking curves in a CBED pattern

(Zuo et al., 1988; Spence & Zuo, 1992; Bird & Saunders, 1992a)

have been fully developed as practical methods. Reviews of

structure-factor measurement by electron diffraction can be

found in Spence (1992) and references therein. With a simu-

lated pattern of GaP, Bird & Saunders (1992b) discussed the

possibility of measuring structure factors by matching a zone-

axis CBED pattern. In this paper, we use a blank-disc

convergent-beam electron diffraction pattern of an organic

crystal to determine structure-factor phases using a ®tting

procedure between observed and calculated intensities.

2. Thickness estimation and excitation error
measurement under kinematic conditions

In this section, we describe a new method based on kinematic

theory for determining thickness. The expression for the

kinematic diffracted intensity, neglecting the Lorentz±polar-

ization correction and absorption is, with I0 = 1:

Ig �
�t

�g

� �2 sin��tSg�
�tSg

� �2

;

where �g is the two-beam extinction distance, t the sample

thickness and excitation error Sg � �ÿ2Kt � gÿ g2�=2K, Kt is

the component of the incident wavevector K in the zero-order

Laue zone. In a CBED disc, the variation of incident-beam

direction across the disc can be speci®ed by variations in the

length and direction of a two-dimensional vector Kt once an

origin is ®xed (see Fig. 2.5 in Spence & Zuo, 1992). In this

paper, we work with the angle-integrated intensity integrated

along a line across a CBED disc. This is:

Ig int � �1=�2
g�
R �sin��tSg�=Sg�2 dr: �1�

The lines we scanned go through the centers of the CBED

discs so that the integration directions are radial with respect

to the center of the pattern. In a zone-axis CBED pattern, if

the zone-axis crystal is exactly parallel to the wavevector (K),

Kt is zero in the center of each disc. Each point in the CBED

disc de®nes an excitation error in terms of Kt. In this case, the

integrated intensity along the scanning line in the g disc is the

same as that in the ÿg disc. However, if Kt is not zero at the

center of each disc, which means that the sample orientation is

not exactly at the zone axis, the integrated intensity of the g

disc is different from that in the ÿg disc since their excitation

errors Sg are different. If we compare the integrated intensities

of the g and ÿg pairs, the structure-dependent �g cancels and

I�g int

Iÿg int

�
R �sin��tS�g �=S�g �2 dsR �sin��tSÿ�=Sÿg �2 ds

: �2�

For a given thickness t, we can use the intensities from the 200

and the �200 beams to determine the component of Kt along

the a� direction (Ktx). Another component of Kt along the b�

direction (Kty) can be calculated using the integrated intensity

of the 020 and 0�20 re¯ections, assuming that the zone axis is

taken along the c direction. Then we can use other pairs of

re¯ections to ®nd the optimal values of t and Kt, using the

function

min�g� �
X

g

I�g int

Iÿg int

ÿ
R �sin��tS�g �=S�g �2 dsR �sin��tSÿ�=Sÿg �2 ds

�����
�����: �3�

The best values of thickness t and Kt are obtained at the global

minimum of min(g).

After optimal values of thickness t and orientation Kt are

found, we can use (1) to obtain the Fourier coef®cients Vg of

the crystal potential since �g � �=jVgj�:

Vg �
�

�

Ig intR �sin��tSg�=Sg�2 ds

( )1=2

; �4�

where � � �2�mjej��=h2 is the interaction constant. Then the

electron structure factor Fg can also be calculated using:

Fg �
�
 cos �

�

Ig intR �sin��tSg�=Sg�2 ds

( )1=2

: �5�
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This method is useful for measuring small deviations of sample

orientation from the zone axis, for ®nding excitation errors,

while at the same time giving an estimate of the sample

thickness. It can also be applied to selected-area diffraction

patterns (spot patterns), and in this case we use the observed

intensity (Ig) instead of the integrated intensity (Ig_int). The

method is based on the kinematic approximation so that it

gives valid results only from a CBED or spot pattern taken

from a very thin area. If an optimized thickness is found to be

too large, the absolute values of Vg will not be accurate.

3. Solving the phase problem by fitting observed and
calculated intensities

Intensity calculations were performed using the Bloch-wave

theory, based on matrix diagonalization of the many-beam

equations (Bethe, 1928; Hirsh et al., 1977; Spence & Zuo,

1992). Following the notation used by Koch & Spence (2002),

a structure-factor matrix A can be written as:

A �

ÿK2
t Ug Ug0 . . .

Uÿg ÿ�Kt � g0�2 Uhÿg0 . . .
Uÿg0 Ugÿg0 ÿ�Kt � g0�2 . . .

..

. ..
. ..

. . .
.

0BBB@
1CCCA;

in which Ug are the dynamical structure factors, Kt is a vector

to describe the tilt of the crystal and g, g0 are reciprocal-lattice

vectors for each beam. Unlike Fourier coef®cients of the

potential Vg, Ug is dependent on the energy of the incident

electron: Ug = �Vg=�� (Spence & Zuo, 1992) and usually the

absolute value of Ug is much smaller than that of Vg and Fg.

The Bloch-wave method relates the matrix A to a scattering

matrix S by

S � exp��it�A�:
The physical meaning of the matrix S is discussed by Spence

(1998); the complex amplitudes of the spots in a diffraction

pattern are the values within a single column of S. The

intensities in the diffraction pattern become a complicated

function of the structure factors describing the scattering

potential. The basic principle of quantitative CBED structure-

factor measurement is that by adjusting these structure factors

a best ®t between simulated and observed intensities can be

found.

For a centrosymmetric (centric) structure or a centro-

symmetric projection of a non-centrosymmetric crystal, the

structure-factor phases are 0 or �. To solve the phase problem,

it is thus necessary to determine only the sign of each observed

|Ug|. Using values of |Ug|, measured from a thin area, different

structure matrices A can be constructed using different sets of

signs (phases). The correct phases can thus be found when the

residual between the observed and calculated intensities is a

minimum. The residual R between theory and experiment is

calculated using

R �
P

g jcIcal
g ÿ Iexp

g jP
g I

exp
g

;

Figure 1
(a) Blank-disc kinematic CBED pattern, (b) and (c) selected-area
electron diffraction spot patterns of anthracene along the [001] direction.
(b) is from the same thick area as that of (a) while (c) is taken from a thin
area.



where Iexp are the experimental intensities, Ical are the calcu-

lated intensities and c is a normalization constant.

Electron scattering factors were taken from Peng (1999).

Symmetrically equivalent atom positions in real space and

re¯ections in reciprocal space are automatically generated

using the space-group symmetries. Approximate |Ug| values

can be obtained from the observed intensities using the

Wilson-plot normalization method (Wilson, 1942). All the

beams included in the structure-factor matrix A were ®rstly

checked with their corresponding plane-group symmetry in

reciprocal space, and the independent beams selected. Certain

initial phases (one or two for two-dimensional data, depending

on crystal symmetry) can be assigned to de®ne the lattice

origin. If n independent re¯ections remain after origin de®-

nition, then 2n different sets of phases can be constructed and

tried to ®nd the smallest R.

4. Experimental evaluation of method using anthracene

4.1. Experimental procedure

Dilute solutions of anthracene in a xylene solvent were

spread onto the surface of distilled water to form thin ®lms.

The thin ®lms were then deposited on grids by lifting the grids

horizontally through the ®lms. The samples were studied using

a LEO EM912 with an Omega energy ®lter at 120 kV. A

liquid-N2 sample holder was employed to cool the crystals and

a 1 K � 1 K CCD camera with 14 bit dynamic range was used

for data collection. Spot electron diffraction as well as low-

temperature, low-dose CBED patterns were collected along

the [001] direction (for more details see Wu & Spence, 2002).

4.2. Background subtraction and test of kinematical
approximation

The structure of anthracene, C14H10, which has a monoclinic

unit cell with a = 0.858, b = 0.602, c = 1.118 nm and � = 125�

was solved by Robertson (1933). Its space group is P21=a.

Recently, accurate parameters of anthracene were measured

at six temperatures using single-crystal X-ray diffraction

(Brock & Dunitz, 1990). Fig. 1(a) shows a low-dose kinematic

CBED pattern of anthracene taken along the [001] direction,

while Fig. 1(b) is a spot pattern taken from the same region.

The CBED pattern is obtained from a smaller area, so that

sample imperfections such as bending, defects, thickness

¯uctuation or impurities are minimized. The elastic energy-

®ltered CBED patterns we use include weak diffuse back-

ground scattering from phonon scattering. We assume that

background intensity is evenly distributed at the same scat-

tering angle. Fig. 2(a) shows an experimental background

curve obtained by scanning a line outside the Bragg disc from

low to high scattering angle. The background intensity in each

re¯ection was then subtracted by interpolation between the

background intensity (the best-®t curve shown in Fig. 2a). Fig.

2(b) shows the intensity variation in the (200) and (�200) discs,
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Figure 2
(a) Experimental background taken from the CBED pattern in Fig. 1(a).
A ®tting curve is calculated to extract the background. (b) Observed
intensity variation in 200 and �200 discs with Ktx, the component of Kt

along a�.

Table 1
List of observed angle-integrated TED intensities (Ig_int) for anthracene
at an accelerating voltage of 120 kV; retrieved moduli of Fourier
coef®cients of crystal potential (|Vg_cal|) based on the kinematic
approximation, using equation (4); the moduli normalized by the
Wilson-plot method, based on the observed intensity taken from Fig.
1(c) (|Vg_C|); and the moduli of the calculated Fourier coef®cients of the
crystal potential (|Vg|) based on the known structure of anthracene.

The agreement between theory and experiment after Wilson-plot normal-
ization is seen to be fairly good.

hkl Ig_int

|Vg_cal|
(kinematic)

|Vg_C|
(Wilson)

|Vg|
(theoretical)

200 0.3525 1.2099 3.4389 3.3095
�200 0.3612 1.2045 3.4389 3.3095
110 0.3388 0.9149 2.9761 2.6631
�1�10 0.2850 0.9176 2.9761 2.6631
1�10 0.2862 0.9248 2.9761 2.6631
�110 0.3438 0.9183 2.9761 2.6631
210 0.0932 0.7248 2.2959 2.5540
�2�10 0.0487 0.6636 2.2959 2.5540
2�10 0.0504 0.6946 2.2959 2.5540
�210 0.0834 0.6711 2.2959 2.5540
020 0.1057 0.6863 1.5745 1.2007
0�20 0.0348 0.6727 1.5745 1.2007
�120 0.0132 0.2975 0.9551 0.7618
1�20 0.0047 0.3820 0.9551 0.7618
�1�20 0.0053 0.3939 0.9551 0.7618
120 0.0164 0.3365 0.9551 0.7618



research papers

584 Wu and Spence � Thin organic films Acta Cryst. (2002). A58, 580±589

using the intensity along a line parallel to the a� axis across

each disc. The blank disc (as judged by eye) actually has a little

intensity variation in the disc.

We then apply the method described in x2 to test whether

the kinematic approximation can be used to estimate sample

thickness. The function min(g) in (3) has the smallest value

when the sample thickness is 296.9 AÊ and Ktx = 0.001, Kty =

ÿ0.033. The retrieved |Vg| values then calculated using (4) are

listed in Table 1. By comparing them with the known theo-

retical values for anthracene, we ®nd that the kinematic

approximation is obviously not a good approximation. In

order to ®nd the correct thickness, dynamical effects evidently

must be included, as shown in the next section.

4.3. The Bloch-wave method for thickness determination and
phase measurement

In the Bloch-wave method, one has to ®rstly determine how

many beams are to be included in the structure matrix A. This

depends on the size of the unit cell projected in the beam

direction and on the atomic number of the atoms in the

crystal. A way to test whether the number of beams is suf®-

cient is to increase the number of beams and ensure that this

increase makes no appreciable difference to the intensities of

the beams of interest (Cowley, 1992a,b). A more practical way

is to include all the observed strong and medium-strong

re¯ections in A. Weak beams can be included as Bethe

perturbations (Spence & Zuo, 1992). Although it is safe to

include all the observed re¯ections in the structure matrix,

inclusion of additional weak beams in A will increase running

time and is unnecessary. For example, Fig. 3 plots two sets of

I versus t PendelloÈsung curves for two structure-factor

matrices A. The ®rst has 7 beams in its ®rst column (all strong)

while the other has 11 beams (including 4 weak beams).

Their difference may be evaluated using the chi-square

�2 �Pi�1=I2
i ��I2

i ÿ I1
i �2, giving �2

�000� � 4:3, �2
�200� � 0:9 and

�2
�110� � 0:9. We have therefore used a matrix containing 7

beams in its ®rst column. This is reasonable here since, for an

organic crystal containing only light atoms like C and H, a

small structure-factor matrix A is suf®cient. The 7-beam

matrix A includes 42 re¯ections, however, by symmetry (P2gg

plane group), the number of independent beams is reduced

to 6. These are {200, 110, 020, 400, 310, 220}. The projection

of the anthracene structure along [001] has P2gg plane-group

symmetry. Within this plane group, structure factors have the

following characters represented by amplitudes and phases:

jFhk0j � jF �h �k0j � jF �hk0j � jFh �k0j;
� �h �k0 � �hk0; � �hk0 � �h �k0 � �hk0

�if h� k � 2n; n � 1; 2; . . .�
and � �hk0 � �hk0 ÿ �; �h �k0 � �hk0 ÿ �

�if h� k � 2n� 1; n � 1; 2; . . .�:
The absolute values of |Ug| were then obtained from a spot

pattern taken from a very thin crystal using Kohler-mode

selected-area diffraction (SAD) (Fig. 1c). Two patterns were

used and data merged together based on common re¯ections

as listed in Table 2. The observed intensities were normalized

by the Wilson-plot method (Wilson, 1942). Wilson-plot

normalization is based on a kinematic approximation,

and puts the amplitudes on an absolute scale using:

hj�j2is �
Pn

i�1 f 2
i �s�, in which � is the potential of the crystal.

The practical procedure is as follows: the observed intensities

Ig of re¯ection g were subdivided into groups according to

their Sg values. (Each group corresponds to a small radial

increment in scattering vector.) The interval of radial incre-

ment is automatically set to ensure that the numbers of

re¯ections in each group are similar. Then the average of

the observed intensities for each group was calculated:

hIexpi �
ÿPp

j�1 Ij
g

��
p (with p re¯ections in a group, where p

denotes the number of re¯ections with similar reciprocal-

lattice vectors). At the same time, the theoretical mean scat-

tering of the structure at the mean s (the mean value in each

group) is calculated using hIcali �
Pn

i�1 �f i
s �2, adding the

average contribution of all n atoms in the structure. The

normalization is thus performed by equating the mean

experimental and theoretical intensity for each group:P
k hIexpik �

P
k hIcalik if k groups are used. The contribution

of the Debye±Waller factor may also be considered. This

Figure 3
PendelloÈsung curves (Ig versus t) calculated using a 7-beam structure
matrix (solid line) and an 11-beam structure matrix (dashed line).

Table 2
List of structure factors |Ug| obtained experimentally from spot electron
diffraction patterns and normalized structure factors |Eg|.

|Ug| values are used in Bloch-wave calculation and |Eg| in direct methods.

hkl |Ug| |Eg|

200 0.0288 1.7111
110 0.0240 1.7869
210 0.0194 1.7800
020 0.0129 1.1845
410 0.0099 1.6375
400 0.0087 0.9678
310 0.0086 1.0509
220 0.0081 0.9378
140 0.0080 1.5783
120 0.0065 0.6341
320 0.0061 0.8929
420 0.0051 0.9871
040 0.0043 0.8241
340 0.0041 1.0371



method requires prior knowledge of the atom types present

and the number of each atom type present. The number of

re¯ections included in each group should be similar. We ®nd

that the method gives good normalized results even in the

presence of small dynamical perturbations. The isothermal

temperature factor B obtained from the Wilson plot is 7.4 AÊ 2.

The |Fg| values obtained were then converted to give |Vg| and

|Ug|. The retrieved |Vg| values are listed in column 3 of Table 1,

compared with calculated values for the known structure. The

errors in the values of |Vg| obtained are seen to be small. These

errors need not cause dif®culty in ®nding phases by the Bloch-

wave method, since the Bethe perturbation theory has already

predicted the error, using perturbation of weak beams (Bethe,

1928; Spence & Zuo, 1992).

An evaluation of the in¯uence of each independent Ug on

the dynamical Ig is helpful. Fig. 4 shows Igÿ Ug curves for 200,

110, 310 and 220, respectively, calculated with a seven-beam

matrix A, thickness being arbitrarily set to 550 AÊ , with Kt zero.

It is found that, when the sign of Ug changes, the calculated

intensity changes appreciably, and this multiple scattering

effect can be used to determine the signs. More precisely,P
h Ih

Ug 6�
P

h Ih
ÿUg in the Ig ÿ Ug curve, in which h = {000, 200

and 110} whose calculated intensities are compared to the

experimental ones. According to this rule, the signs of the

weak beams included in the matrix A, however, may not be

able to be correctly assigned, since the calculated weak

intensities, being kinematic, are not sensitive to change of sign

in their Ug. Thus a threshold was set to exclude weak re¯ec-

tions from phase identi®cation, for example the 220 re¯ection

shown in Fig. 4(d). Furthermore, we also ®nd from the curves

in Fig. 4 that the change of calculated intensity due to the

change in sign of a |Ug| is usually larger than that due to a small

change in the absolute value of the |Ug|. The single structure

invariants and semi-invariants were ®rstly checked in order to

assign phases to the independent re¯ections. For example, 200

is a structure semi-invariant so that its phase is only deter-

mined by the crystalline structure. However, the phase of the

110 re¯ection can be assigned as either 0 or � to de®ne the

origin. After the phases of the 110 and 210 beams are assigned

to de®ne the lattice origin, all the independent beams included

in the structure-factor matrix A are single structure semi-

invariants. Of the six independent re¯ections with 110 (used

for de®nition of the origin) and 220 (weak beam) excluded,

altogether 24 = 16 different sets of trial phases (signs) remain

to be considered as possibilities for the remaining 4 beams.

With only 16 tests, it is possible to search exhaustively for a

minimum between experimental and calculated intensities in

the full multiparameter space. The variables in the calculation

include Ug, thickness t and orientation parameters Kt (Ktx and

Kty, the components of the tangential component of the

incident wavevector). The sample thickness is an important

®tting parameter and a relatively large range should be

included if there is no a priori value

available. We used a thickness range

from 200 to 800 AÊ with steps of 1 AÊ in

the calculation. The minimum value of

thickness can be estimated from the

previous calculation based on the

kinematic approximation. In our case,

a blank-disc-like CBED pattern

cannot be obtained from a thick

sample, so that the estimate of 800 AÊ

as the maximum value is enough.

Since we also include sample

orientation parameters (Ktx and Kty)

in the calculation, the computing time

becomes very large if one has to use

small steps and search a large range.

However, as shown in Fig. 5, which

plots the intensity of the 000 beam

against Ktx and Kty values, the angle-

integrated intensity of the zero CBED

disc is a maximum when the incident

beam is aligned with the zone axis

and falls off with misalignment. We

normalize the CBED pattern such that

the sum of experimental intensity is

unity, ignoring absorption in these

blank-disc patterns. Since in the

CBED pattern the 000 intensity can be

measured, we can increase computing

speed by adjusting thickness ®rst, until

the calculated intensity of the 000
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Figure 4
Variation of diffracted-beam intensity with structure factor Ug for different beams, (a) g = 200, (b) g =
110, (c) g = 310 and (d) g = 220.
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beam is equal to or greater than the experimental value. Then

Kt is re®ned.

Fig. 6 shows the results of calculations for 16 different sets

of phases. The minimal residual R of each trial set and the

thickness for which the minimum was obtained are plotted

against the number of the test set n. The smallest R is obtained

when t = 631 AÊ , Ktx = 0.0004 and Kty = 0.0002. The corre-

sponding phases of the four independent re¯ections are listed

in the second column of Table 3 and will be discussed together

with the results from direct methods in the next section. Since

we have only 16 phase permutations, it is informative to show

the 16 potential maps obtained by Fourier synthesis, as shown

in Fig. 7. Each four maps placed in the same column are

related to each other. The negative values in the potential map

are caused by either incorrect phases or deviation of the

amplitudes from theoretical values, since we used experi-

mental amplitudes for each re¯ection in the Fourier synthesis.

4.4. Comparison with direct methods for phase solution

If a diffraction pattern can be treated as kinematic, direct

methods provide a powerful method for solving the phase

problem. As normally used in X-ray crystallography, the

assumptions of atomicity and the sign constraint apply to the

charge density which diffracts X-rays. For electrons, these

assumptions must be applied to the electrostatic potential

which diffracts electrons. Knowledge of atomic coordinates is

required to transform electron scattering factors to X-ray

scattering factors (Spence & Zuo, 1992). Fig. 1(c) shows such a

kinematic pattern. All the forbidden re¯ections are invisible,

indicating it came from a very thin area. With such a pattern,

the observed intensity was ®rstly normalized by a Wilson-plot

method, giving a set of absolute |Fg| (or |Vg|, |Ug|). The |Vg|

values obtained are listed in column 3 in Table 1. Then exci-

tation errors were determined by ®nding the value of the

thickness that minimizes the difference between calculated

kinematic intensities (including excitation errors) and the

experimental intensity. The best ®t thickness was 34.2 AÊ ,

showing that the kinematical approximation is good for this

pattern. A set of F(h) was then further normalized using

jE�h�j2 � jF�h�j2="Pi f 2
i to calculate the normalized structure

factors (Hauptman & Karle, 1953). The factor " is a small

integer that depends on the space group and the type of

re¯ection, fi are the electron scattering factors for the i-type

atom at [sin(�)=�]h. The origin was ®xed by the phases of the

110 and 210 re¯ections, and triplet and quartet phase

invariants were used in direct phasing. The �1 triple

 � �h � �h � �ÿ2h was used (Dorset, 1995), with associated

|Eh| values, to compute A1 � ��3=�
3=2
2 ��jEhj2 ÿ 1�jE2hj, in

which �n �
PN

i�1 zn
i and zi is the atomic number of the ith

atom. The probability distribution for  is given by

P� � � �1=2�I0�A1�� exp�A1 cos �, so that the most probable

value is zero. The �2 triple,  � �h1 � �h2 � �h3 (h1 6� h2 6�
h3) with associated |Eh| values to calculate A2 �
�2�3=�

3=2
2 �jEh1Eh2Eh3j and the probability P� � �

�1=2�I0�A2�� exp�A2 cos �, was also used. The quartet phase

invariant was also employed in our calculation, here

 � �h1 � �h2 � �h3 � �h4 with the quality

B � �2�3=�
3=2
2 �jEh1Eh2Eh3Eh4j�jEh1�h2j2 � jEh2�h3j2

� jEh1�h3j2 ÿ 2�

and the probability P� � � �1=2�I0�B�� exp�B cos �
(Hauptman, 1972; Woolfson & Fan, 1995; Dorset, 1995). The

results are listed in column 4 of Table 3. For comparison, in

order to evaluate the errors introduced by multiple scattering

Figure 5
Calculated intensity variation of 000 beam with the two-dimensional
orientation parameter Kt (Ktx and Kty). I(000) has the largest value when
Kt is zero. A plot of angle-integrated intensity (integrated along a line
across the disc) has closely similar shape.

Figure 6
The minimal residual R found with each set of trial phases n, and the
corresponding optimum thickness t for which R was calculated.

Table 3
Phases determined by our multiple scattering method (column 2); direct
methods applied to multiple scattering patterns (Fig. 1b); and direct
methods applied to kinematic data from a thin crystal (Fig. 1c).

Re¯ections 110 and 210 were used to de®ne the lattice origin.

hkl Bloch wave

Triplet, quartet
invariants applied
to dynamical data

3 and 4 invariants
applied to
kinematic data

200 0 0 0
020 � 0 �
400 � 0 �
310 0 0 0
320 � �
410 � 0
220 0 �



to direct methods, the same procedure was applied to the

dynamical diffraction pattern shown in Fig. 3(b) and the result

is listed in column 3 of Table 3. We see that the correct phases

can be found by direct methods using the pattern taken from a

very thin area. We also see that the Bloch-wave method of the

previous section gives the correct phases based on the dy-

namically disturbed pattern, whereas direct methods give

incorrect phases in this case. Based on simulated results, it was

found that the direct phasing method can generally give

correct phases up to a crystal thickness of about 75 AÊ at

100 keV (see also Dorset et al., 1979). The proposed new

method can thus be used independently or combined with

direct methods. In the later case, it has the potential to give the

correct phases for some important initial re¯ections, and so

enhance the performance of direct methods. It also provides

the possibility of simply distinguishing between enantio-

morphs and determining polarity in acentric structures

(Spence & Zuo, 1992; Spence et al., 1994).

In Fig. 8, the projected potential of the anthracene crystal

along the [001] direction is shown as derived from these

experimental measurements. This is a Fourier synthesis of the

re¯ections whose phases were solved by the Bloch-wave
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research papers

Figure 7
Potential maps obtained by Fourier synthesis of the 16 sets of trial phases. The numbers of each set of phases are labeled. The solid contour lines are
positive values while the dashed lines correspond to negative values. Incorrect phases introduce large negative values in the potential maps.
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method and direct methods. A higher threshold was used to

ensure a reliable relationship among phases, i.e. a triplet was

accepted only when the A2 value in the above equation was

bigger than the threshold. We found that several high-order

weak re¯ections were included in the Fourier synthesis when

the threshold was small. This introduces arti®cial contrast in

the potential map since the intensities of these high-order

re¯ections may be in error owing to the effects of their non-

zero excitation error, hence their phases could not be obtained

correctly. For clarity, we set all the negative values in the

calculated potential to zero since the negative values are only

about one tenth of the positive values. The amplitude of each

re¯ection was taken from the kinematic pattern in Fig. 1(c). It

is interesting to note that, besides the C-atom positions, the

faint contrast corresponding to the position of the H atoms is

obtained, indicated by the letters in Fig. 8(a). A difference is

clear when we compare the simulated potential map based on

a neutral-atom model of anthracene, as shown in Fig. 8(b).

These elongated shapes can be compared to the H-atom

positions in a structural model of anthracene projected along

the [001] direction shown in Fig. 8(c). This indicates that,

because of its much greater elastic scattering cross section and

sensitivity to ionicity, electron diffraction provides a powerful

capability for determining light-atom structures. The thermal

vibration will make it more dif®cult to ®nd the positions of

H atoms. This effect in our experimental data is reduced

compared to those collected at room temperature since our

diffraction data was collected at liquid-nitrogen temperature

(105 K).

In summary, the proposed method is to use dynamical

scattering calculations with the Bloch-wave method for

extraction of structure-factor signs, exploiting multiple-beam

dynamical effects in crystals of moderate thickness. In our test

with anthracene, we used a small set of intensities collected in

the CBED mode in one projection and thus we were able to

®nd the global minimum in the full parameters space step by

step. With an increased number of re¯ections, the amount of

calculation would be greatly increased. In that case, one may

wish to use other global minimization algorithms, such as

simulated annealing or the simplex method to increase

calculation speed. One may be able to construct the structure-

factor matrix using strong and medium re¯ections to avoid a

large matrix A by excluding weak re¯ections. Obtaining a

suf®cient number of intensities to construct the matrix A may

also be a problem if the matrix becomes large. The use of very

thin crystals and sensitive image-plate detectors may then be

useful for the collection of more re¯ections in one pattern.

Also, one may try to tilt off the axis in order to collect more

high-order re¯ections since slight tilting may bring the high-

order re¯ections closer to their Bragg-re¯ection positions.

This method is one of several recent approaches to the

phase problem in electron crystallography. Recently, direct

methods (Dorset, 1995), maximum-entropy and the log-

likelihood method, and packing-energy calculations (Voigt-

Martin et al., 1995, 2000; Yu et al. 2000) have been developed

and used in electron crystallography. Another full dynamical

calculation method, using the multislice method, has also been

developed for structure re®nement (Jansen et al., 1998).

5. Conclusions

In conclusion, we have shown that, for organic crystals, by

matching experimental low-temperature CBED intensities

with calculated ones we can solve the phase problem for

centrosymmetric crystals using dynamically in¯uenced elec-

tron diffraction. A change of structure-factor sign for strongly

scattered beams produces a large change in the intensity of

multiply scattered beams. The observation of CBED discs with

uniform intensity is also found to be useful for identifying

single-scattering conditions that allow measurement of struc-

ture-factor amplitudes. The use of the CBED mode minimizes

problems with thin-®lm bending. Two experimental electron

diffraction patterns from two different thicknesses were also

used to expose errors due to multiple scattering when using

Figure 8
(a) Experimental potential map for anthracene, based on a Fourier synthesis of the re¯ections whose phases were solved, compared with (b) simulated
potential map of anthracene and (c) a projection of the known anthracene structure along [001]. C atoms are represent by the large black circles and H
atoms by the small white circles. There are faint indications in the experimental map for hydrogen.



direct methods. The dynamical method, combined with direct

methods, appears to be a powerful means for ab initio struc-

ture determination, especially to account for the dynamical

effect and to invert a dynamical diffraction pattern directly to

a crystal potential map. Finally, we see evidence of hydrogen

atoms in our experimental potential map reconstructions from

anthracene.

We thank C. Koch and M. Stevens for stimulating discus-

sions. Supported by ARO award DAAD190010500.
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